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Machine learning models are often treated as black boxes and evaluated only in terms of their performance (e.g., accuracy)
on held-out data sets. However, good performance on a held-out data set is seldom sufficient for people to trust a model and
deploy it to make real-world decisions, and there is widespread consensus that people’s failure to understand a model can be
problematic [1, 2]. In response to these concerns, there is a new line of research that focuses on developing interpretable
methods for machine learning, either by developing new models that are inherently simple to understand [3] or by providing
explanations or interpretations of existing complex models [4, 5, 6]. Despite the popularity of this line of research, there is no
clear, agreed-upon definition of interpretability. Defining and quantifying interpretability therefore remains an open question.

Through large-scale randomized experiments, we vary factors that should make models more or less interpretable and, in
turn, measure how these changes impact people’s decision making. We ask each participant to predict apartment prices in New
York City, with the help of a model (linear regression). We show participants models that receive the same inputs and produce
the same outputs, manipulating only the presentation of the models. We vary the number of features (two vs. eight) and the
visibility of the model internals (clear vs. black box) in a 2× 2 between-subject study. As a baseline, we also ask participants
to predict apartment prices without the help of a model. For each experimental condition, we show participants a set of
apartments, the model’s price predictions for those apartments, and the apartments’ sale prices. Next, we show participants a
new set of apartments. For each one, we ask them to guess the model’s prediction. We then show them the model’s prediction
and ask them to guess the sale price. Drawing on previous work [7, 8], we measure three different proxies for interpretability:
1) Simulation error (the participant’s error in guessing the model’s prediction); 2) trust (the participant’s confidence that the
model has made the right prediction); and 3) prediction error (the participant’s error in guessing the sale price).

Our preliminary results indicate that, on average, participants in the two-feature, clear-model-internals experimental
condition have lower simulation error. Interestingly, participants in the eight-feature, black-box-model-internals experimental
condition do as well as participants in the eight-feature, clear-model-internals experimental condition. This result suggests that
the number of features affects model interpretability. Despite these differences in simulation error, we find that participants’
prediction error is comparable across all four experimental conditions—i.e., participants appear to trust the models similarly.

We see this as the first of many possible experiments to guide the development of interpretable machine learning methods.
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